
1. Revisiting Kepler’s measurements

Kepler’s first law states that the planets revolve around the sun in an elliptical
pattern with the sun as one of the ellipse’s foci. Earlier, we defined an astronom-
ical unit (AU) as the distance between the earth and the sun. However, since
earth revolves in an elliptical pattern, its distance to the sun changes through its
orbit. Let a be the distance of the earth’s semimajor axis, and let e be its linear
eccentricity. As the sun is on of the earths focal points, the furthest it every gets
from the sun is a + e. We say Earth is in aphelion when it is furthest from the
sun. The closest it gets to the sun is a − e. We say Earth is in perhelion when it
is closest to the sun. Therefore, the earth’s average distance from the sun is

(a + e) + (a − e)

2
=

2a

2
= a.

So its average distance to the sun is the same as the length of its semimajor axis.
From now on, the AU will refer to the length of the earth’s semimajor axis. It
wasn’t until the 19th century that the AU was measured with any sort of remark-
able accuracy. The most precise modern measurements put AU ≈ 92,955,807.2
miles.

Let’s analyze some of Kepler’s measurements of Mars’ orbital pattern. Refer to
table 4.2 in your text for reference. Kepler found that Mars’ furthest distance from
the sun is about 1.6678 AU and its smallest distance is about 1.3850 AU. Therefore,
its average distance is about (1.6678+1.3850)/2 = 1.5264 AU. Thus, the semimajor
axis of Mars’ orbit has length a = 1.5264 AU. We also see that a + e = 1.6678 AU
and a−e = 1.3850 AU, so its linear eccentricity is about 0.2828/2 AU = 0.1414 AU.
This gives us that Mars’ astronomical eccentricity is ε = 0.1414

1.5264 ≈ 0.0926.

Notice that Mars’ (as well as all the other planets’) astronomical eccentricity is
very small. This means that it does not have much “flatness” or that its orbit is
nearly circular. This fact is the reason why Copernicus’ model, while erroneous,
was still very accurate in its measurements. Of all the planets (the six known at
the time of Kepler), Mercury’s is the most “elliptical” in shape. Its astronomical
eccentricity is about 0.2056.

2. Kepler and Mars

We will use the modern astronomical measurements in this section. The meth-
ods are still true to Kepler though. As noted above, 1 AU ≈ 92,955,807.2 miles.
Since Mars is on average 1.5237 AU from the sun, its semimajor axis is a ≈

(1.5237)(92,960,000) ≈ 141.64 million miles. The linear eccentricity is e = ε ⋅a. So
the length of the semiminor axis is

b =
√

a2 − e2 =
√

a2 − ε2a2

1
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= a
√

1 − (0.0934)2 = a
√

1 − 0.0087

= a
√

0.9913 = 0.9956 ⋅ a.

So b = 0.9956)(141.64) = 141.02 million miles. We can now compute the maxi-
mum and minimum distances of Mars from the sun.

a+ e = a(1+ ε) = a(1+ 0.0934) = 1.0934a = (1.0934)(141.64) ≈ 157.87 million miles.

a− e = a(1− ε) = a(1− 0.0934) = 0.9066a = (0.9066)(141.64) ≈ 128.41 million miles.

Now let’s look at some of the earth’s measurements. The semimajor axis is of
course 1 AU. Its astronomical eccentricity is about ε ≈ 0.0167. So its semiminor
axis is about

b =
√

a2 − ε2a2 =
√

1 − (0.0167)2 =
√

1 − 0.0003 =
√

0.9997 ≈ 0.9998AU .

The minimum distance of the earth from the sun is

a − e = a − εa = 1 − 0.0167 = 0.9833AU .

Its maximum distance from the sun is

a + e = 1.0167AU .

So the earth’s orbit varies from about 91.41 million miles from the sun to about
94.51 million miles.

3. Kepler’s Equation

Given the data in table 4.2, we can calculate many of the characteristics of the
planets’ orbits. However, what about determining the actual position of a planet
at any given time t? The planets move in an elliptical orbit, and Kepler’s second
law says that wach planet sweeps in an equal area over any time interval. So it
seems feasible that we can find a planet’s position in terms of time.

Consider Figure 1 below. We have an ellipse with semimajor axis a and foci
at (−e,0) and (e,0). Say the sun S is the focus (e,0). The points N and A will
represent the perhelion and aphelion respectively. The point P represents a the
planet’s position. r is the distance of the planet P from the sun S. Let α be the
angle from the major axis to the line PS as shown. Say the planet’s orbital path

is given by
x2

a2
+
y2

b2
= 1.
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Figure 1

Now consider figure 2 below, which is just an augmentation of figure 1. We
superimpose our planet’s orbit onto the circle with radius a as shown. If the
planet’s position is at (x, y), let X = (x,0), and let P = (x, y0) be the corresponding
point on the circle. That is, x2 + y20 = a

2. Create a triangle XOP0. Let β be the

angle from the major axis to the line OP0 as shown.

P0 = (x, y0)

O X S

P = (x, y)

β
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r
α

Figure 2

We will not give all the details of Kepler’s argument, but you can find them in
your text. Our first step is to express α and r in terms of the angle β. Notice that
cosβ =

OX
OP0

=
x
a . From figure 2 we have
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x = a cosβ.

Also note that sinβ =
y0
a . So y0 = a sinβ. Since y = b

ay0. Thus,

y = b sinβ.

Let’s consider triangle ∆SPX. SX = e − x. Also recall that e2 = a2 − b2 and
sin2 β + cos2 β = 1. Using the Pythagorean theorem, Kepler calculated as follows :

r2 = y2 + (e − x)2

= b2 sin2 β + (e − a cosβ)2

= b2 sin2 β + a2 cos2 β − 2ae cosβ + e2

= (a2 − e2) sin2 β + a2 cos2 β − 2ae cosβ + e2

= a2 − e2 sin2 β − 2ae cosβ + e2

= a2 + e2(1 − sin2β) − 2ae cosβ

= a2 + e2 cos2 β − 2ae cosβ

= (a − e cosβ)2

Since, a > e ≥ cosβ, a − e cosβ > 0. r > 0, so we can take the roots of both
sides above to get r = a − e cosβ. We now factor the a on the right side to get
r = a(1 − e

a cosβ). Thus we have

r = a(1 − ε cosβ)

So we have determined the value of r in terms of β.

Consider triangle ∆SPX. We have

tanα = − tan(π − α) = −
y

e − x
=

b sinβ

a cosβ − e
.

Using some trigonometry, we can derive the following :

tan
α

2
=

√

1 + ε

1 − ε
tan

β

2
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The above formula is known as Gauss’ formula, for the German mathematician
Carl Gauss. Notic that Gauss’ equation gives us α in terms of β. So we have
completed our first goal.

Our second goal is to express β in terms of time t. Then we will have α and r in
terms of time, and thus, the position of the planet in terms of time. Refer to figure
2 again. We have that Area section P0XN = Area sector P0ON− Area ∆P0XO.

P0ON is a circular section with radius a and angle β. Therefore, the area is
1

2
a2β.

Of course, the area of the triangle ∆P0XO is
1

2
xy0, where y0 = a sinβ. So the area

of section P0XN is

P0XN =
1

2
βa2 −

1

2
xa sinβ.

From the previous section we have that the area of the elliptical section PXN

is
b

a
(

1

2
βa2 −

1

2
xa sinβ)

=
1

2
βab −

1

2
xb sinβ.

Let At be the area swept by the planet as it moves from the perhelion N to the
point P . Then the area At is PXN−Area of ∆PXS.

At = (
1
2βab −

1
2xb sinβ) − 1

2(e − x)y

= (
1
2βab −

1
2xb sinβ) − 1

2(e − x)b sinβ

=
1
2βba −

1
2eb sinβ

=
1
2βab −

1
2εab sinβ

=
ab
2 (β − ε sinβ)

Recall that Kepler’s second law states that
At

t
is constant for any time t. So in

particular it is this constant for t = T , where T is the period of the planet’s orbital

period. Since the area of an ellipse is
At

t
=
abπ

T
. Thus, At =

abπt

T
=
ab

2
(β − ε sinβ).

After simplification we get,
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β − ε sinβ =
2πt

T
.

The equation above is known as Kepler’s equation. Notice that it expresses the
angle β in terms of time t. Thus, we can express α and r in terms of t. Following
Kepler’s method, we have found a relationship between a planet’s position in terms
of time, meaning given a particular time t, we can determine a planet’s position
P .


